

C-FARM: A Simple Model to Evaluate the Soil Carbon Balance in Cropping Systems

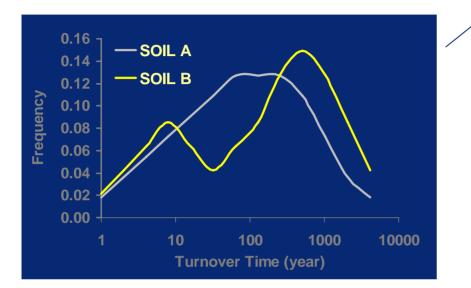
ASABE Centennial Anniversary Minneapolis 20 June 2007 Armen R. Kemanian Blackland Res & Ext Center – TAES Claudio O. Stöckle and Javier Marcos Biological Sys Eng Dept – Washington St Univ David R. Huggins USDA-ARS Pullman WA Valipuram S. Manoranjan Department of Mathematics – Washington St Univ

Introduction Carbon Cycling Modeling Relevance

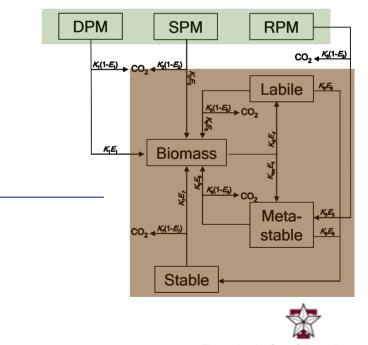
There is a strong demand for methods to compute and certify the soil carbon balance under different agricultural managements due to both environmental concerns and to support the carbon and environmental credits markets

Objective Develop a tool to compute soil C balance

- The following are desirable features of a soil carbon model:
 - Simple structure
 - Consider the entire soil profile
 - No or minimum calibration needs
 - Transferable across locations
 - Consider environmental and management effects on soil carbon turnover
 - Accommodate different management scenarios


Concept evolution More than a century of research

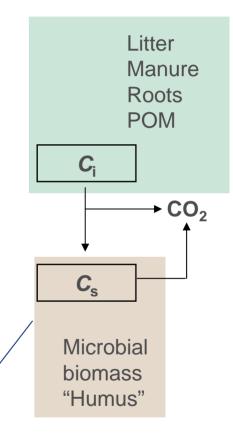
- Hénin and Dupuis (1945): carbon balance
- Jansson (1958): tracer experiments
- Swift (1979): the cascade of decomposition
- Jenkinson and Rayner (1977): multiple carbon pools, Roth-C model
- Paul & coworkers (1979 present)
- Phoenix model (McGill et al. 1981)
- Century, NCSoil, Verberne et al. (1980 1990)
- Hassink & Withmore (1997): Carbon saturation



Challenge Quantitative treatment of complex processes

- Alternative approaches to treat this complexity:
 - Multiple carbon pools with fixed properties
 - Only one carbon pool, with variable properties
 - Multiple carbon pools with variable properties

- Soil organic matter is composed of fractions with varying (continuum) turnover rates
- At best, SOM is treated as composed of discrete fractions with distinct properties


Texas Agricultural Experiment Station THE TEXAS AGM UNIVERSITY SYSTEM

```
Change in Carbon Storage = Inputs - Outputs
```

Hénin and Dupuis (1945)

```
dC_s/dt = hC_i - kC_s
```

 C_s is the soil organic Carbon (Mg ha⁻¹) t is time (year) h is the humification constant C_i is the carbon input k is the <u>apparent</u> soil turnover rate

Change in Carbon Storage = Inputs - Outputs

 $dC_s/dt = h_x(1 - C_s/C_x)C_i - kC_s$

$$C_{\rm s}(t) = h_{\rm x}C_{\rm i}/c + (C_{\rm o} - h_{\rm x}C_{\rm i}/c)\exp(-ct)$$

 $c = h_x C_i / C_x + k$

 h_x is the maximum humification C_x is the maximum soil carbon carrying capacity (Mg ha⁻¹)

C-FARM Analytical solution for variable turnover rate

$$dC_s/dt = hC_i - k_n(1 + C_s/C_k)C_s$$

$$C_{s}(t) = C_{k}[a_{2}Aexp(-k_{n}(a_{2}-a_{1})t-a_{1}] / [1 - Aexp(-k_{n}(a_{2}-a_{1})t)]$$

 $a_1 = -[(1 + (1 + 4b)^{1/2}] / 2$ $a_2 = [(1 + 4b)^{1/2} - 1] / 2$ $b = hC_i / (k_n C_k)$ *A* is an integration constant C_k is a reference soil carbon content (Mg ha⁻¹)

C-FARM The core carbon balance equation for each layer

$$dC_s/dt = hC_i - kC_s$$

 $h = h_c[1 - (C_s/C_x)^n]$ $k = f_e f_t k_x (C_s/C_x)^m C_s$

 $h_{\rm c}$ depends on soil texture resembling Roth-C

- C_x depends on soil texture (Hassink and Withmore, 1997)
- f_e soil temperature and water content factor (energy balance)
- f_t is a function of tillage tool and number of operations (NRCS)

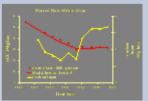
C-FARM Input and Output structure and capabilities

Inputs

daily weather

soil texture and organic carbon by layer cropping systems sequence (seeding and maturity dates)

grain yield (max, min, average) for each crop tillage sequence (tools, date, depth of operation)


Irrigation scheme

	A • • •	В	-	C	D	F	F	G
1			ee fr			E	-	G
2	Inputs and Simulation Control Interface for C-FARM model							
3	Filename and location	C:VARK_ResearchiC-FARMiPullman.xls						
4								
5	Simulation Start Year	1954	•	Export to File	Import Sett	and Clear	All Sheets	Find Weathe
6	Simulation End Year	1955		Update Use	import Sea	ings ciear	Mi Olieets	Find sveaure
7	Share a strategiction of the	obax errors	or updating cro					
8	Number of Years in the Rotation	1	-					
9	Crop(s) Planted in Year 1	Chickpeas	•	· Ins	tructions; C	ops used mu	st be descri	bed
10	Crop(s) Planted in Year 2		•	•	Th	vo crops can	be planted p	er year
11	Crop(s) Planted in Year 3				U	e second slot	of the year	only for a sec
12	Crop(s) Planted in Year 4		•		E	ter 'No Planti	ing Event" fo	r years withou
13	Crop(s) Planted in Year 5		•	-				
14		6.1					_	- CA.H.
	Describe up to 5 crops in rotation	Chickpeas	-					 Only descr
15								Calendar D
16	Average Seeding Date	120						
16 17	Average Seeding Date Average Date of 50% Flowering	170						
16 17 18	Average Seeding Date Average Date of 50% Flowering Average Maturity Date	170 220						Calendar D
16 17 18 19	Average Seeding Date Average Date of 50% Flowering Average Maturity Date Maximum Soil Coverage	170 220 80						Calendar D Calendar D 100% = Ful
16 17 18 19 20	Average Seeding Date Average Date of 50%, Flowering Average Maturity Date Maximum Sol Coverage Maximum Rooting Depth	170 220 80 1						Calendar D 100% = Ful Lowest dep
16 17 18 19 20 21	Average Seeding Date Average Date of 50% Flowering Average Maturity Date Maximum Soil Coverage Maximum Rooting Depth Average expected Yield	170 220 80 1 1000						Calendar D 100% = Fu Lowest dep kg/ha
16 17 18 19 20 21 22	Average Seeding Date Average Date of 50% Flowering Average Maturity Date Maximum Rooting Depth Average expected Yield Maximum expected Yield	170 220 80 1 1000 2000						Calendar Di 100% = Ful Lowest dep kg/ha kg/ha
16 17 18 19 20 21 22 23	Average Seeding Date Average Marcel 50% Flowering Average Matury Date Maximum Soil Coverage Maximum Soli Coverage Maximum expected Yield Maximum expected Yield	170 220 80 1 1000 2000 500						Calendar D. 100% = Ful Lowest dep kg/ha kg/ha kg/ha
16 17 18 19 20 21 22 23 24	Average Seeding Date Average Date of 50% Flowering Average Maturity Date Maximum Rooting Depth Average expected Yield Maximum expected Yield	170 220 80 1 1000 2000						Calendar Di 100% = Ful Lowest dep kg/ha kg/ha
16 17 18 19 20 21 22 23 24 25	Average Seeding Date Average March 50% Flowering Average Matury Date Maximum Soil Coverage Maximum Roting Depth Average expected Yield Maximum expected Yield Percent of moisture in commercial yield	170 220 80 1 1000 2000 500		Available with a mic	imum of three	vields per cro	0	Calendar D. 100% = Ful Lowest dep kg/ha kg/ha kg/ha
16 17 18 19 20 21 22 23 24 25	Average Seeding Date Average Marcel 50% Flowering Average Matury Date Maximum Soil Coverage Maximum Soli Coverage Maximum expected Yield Maximum expected Yield	170 220 80 1 1000 2000 500		Available with a mic			P	Calendar D. 100% = Ful Lowest dep kg/ha kg/ha kg/ha

7日、あいまの・10-10-11日日日 10-10 TILLAGE OPERATION ivator, field w/ spike point tandem secondary or Fert applic, surface broadcast

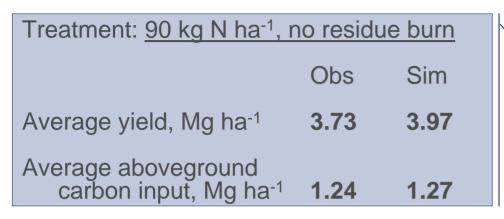
Outputs

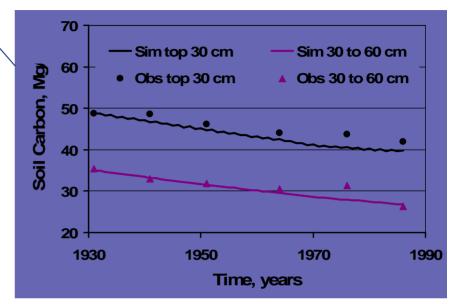
soil organic carbon evolution by layer / year estimated carbon input estimated humified carbon estimated "respired" carbon water balance

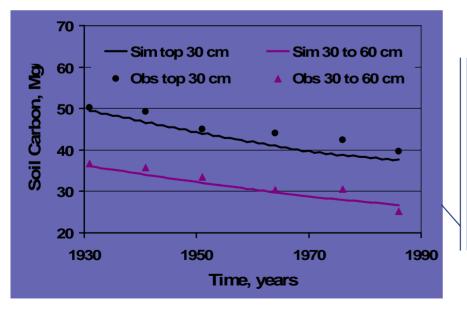
C-FARM Testing: Pendleton OR summer fallow wheat

Site: gently to strongly sloping landscape Climate: semi-arid, winter precipitation, dry summer Soils: mixed mesic Typic Haploxeroll (Walla Walla silt loam)

Original vegetation: shrub / sagebrush - grassland

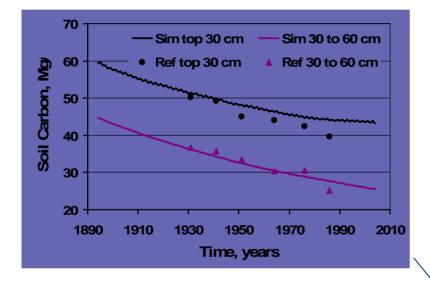



Cropping System: winter wheat / summer fallow Seeding: October / Harvest: July Tillage: moldboard plow in April/May, three operations to control weeds during summer, fertilizer applied 15-cm deep in October, rodweeded before seeding, and seeded 25-cm row with spacing

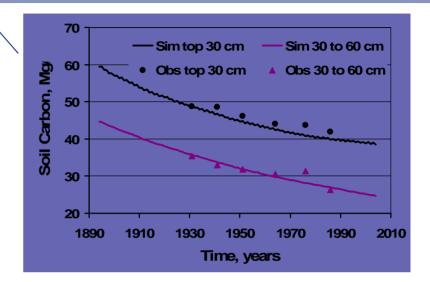


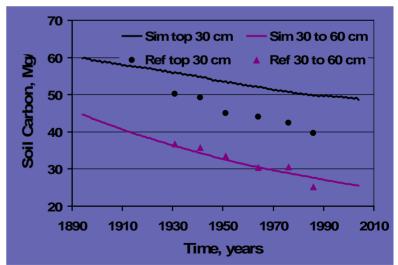
Texas Agricultural Experiment Station THE TEXAS ABM UNIVERSITY SYSTEM

C-FARM Testing: Pendleton OR summer fallow wheat

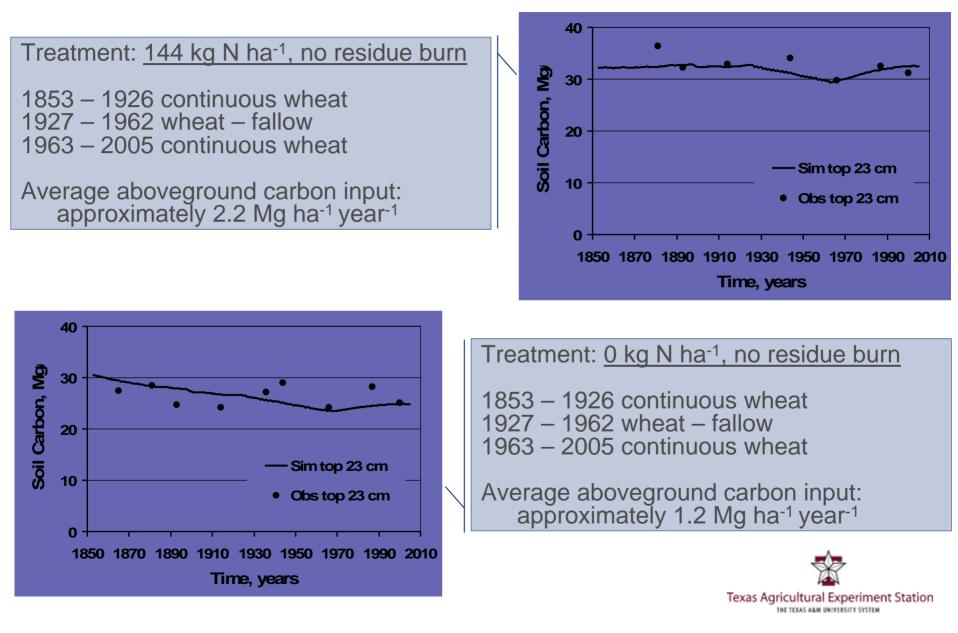

Treatment: no <u>N input, no residue burn</u>								
	Obs	Sim						
Average yield, Mg ha-1	2.62	3.09						
Average aboveground carbon input, Mg ha ⁻¹	0.95	0.96						

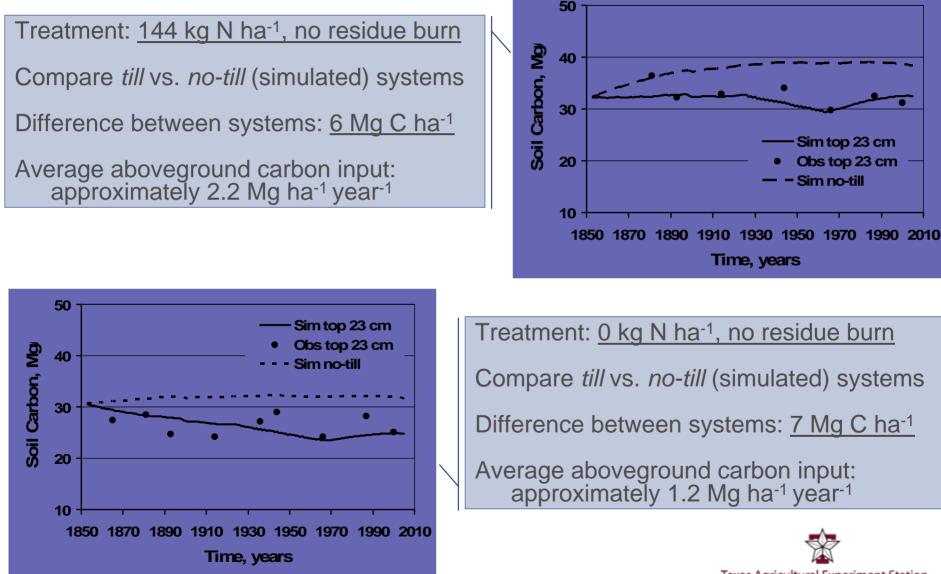
C-FARM Testing: Pendleton OR summer fallow wheat


Treatment: 90 kg N ha-1, no residue burn


Projected soil carbon evolution from the beginning of agriculture in the area

Likely soil carbon evolution with residue input of 1.8 Mg C ha⁻¹ year⁻¹ under *conventional tillage* and summer fallow


Likely soil carbon evolution with residue input of 1.8 Mg C ha⁻¹ year⁻¹ under *notillage* and summer fallow



C-FARM Testing: Rothamsted UK continuous wheat

C-FARM Rothamsted: carbon input and tillage system

Texas Agricultural Experiment Station THE TEXAS ABM UNIVERSITY SYSTEM

C-FARM Concluding Remarks

- C-FARM carbon dynamic representation is scientifically sound
- The model has been successfully tested in two environments with different precipitation patterns and management systems
- The representation of tillage effects is tool-specific
- The interface and limited input requirements makes it useful for consultants and farmers, allowing a quick assessment of the soil carbon balance under different management systems
- Future developments:
 - simple N balance and estimations of denitrification and nitrous oxide emission
 - estimation of erosion
- Stand alone version + web-based simulation capabilities

Acknowledgements

- Funds for developing C-FARM were provided by:
 - the Paul Allen Family Foundation through the Climate Friendly Farming[™] Project of Washington State University,
 - Texas Agricultural Experiment Station
- Shawn Quisenberry provided programming support

- Request more information and a trial version:
 - akemanian@brc.tamus.edu or
 - stockle@wsu.edu

